Cryptographic Extraction and Key Derivation: The HKDF Scheme
نویسنده
چکیده
In spite of the central role of key derivation functions (KDF) in applied cryptography, there has been little formal work addressing the design and analysis of general multi-purpose KDFs. In practice, most KDFs (including those widely standardized) follow ad-hoc approaches that treat cryptographic hash functions as perfectly random functions. In this paper we close some gaps between theory and practice by contributing to the study and engineering of KDFs in several ways. We provide detailed rationale for the design of KDFs based on the extractthen-expand approach; we present the first general and rigorous definition of KDFs and their security that we base on the notion of computational extractors; we specify a concrete fully practical KDF based on the HMAC construction; and we provide an analysis of this construction based on the extraction and pseudorandom properties of HMAC. The resultant KDF design can support a large variety of KDF applications under suitable assumptions on the underlying hash function; particular attention and effort is devoted to minimizing these assumptions as much as possible for each usage scenario. Beyond the theoretical interest in modeling KDFs, this work is intended to address two important and timely needs of cryptographic applications: (i) providing a single hash-based KDF design that can be standardized for use in multiple and diverse applications, and (ii) providing a conservative, yet efficient, design that exercises much care in the way it utilizes a cryptographic hash function. (The HMAC-based scheme presented here, named HKDF, is being standardized by the IETF.)
منابع مشابه
The OPTLS Protocol and TLS 1 . 3 ( extended abstract )
We present the OPTLS key-exchange protocol, its design, rationale and cryptographic analysis. OPTLS design has been motivated by the ongoing work in the TLS working group of the IETF for specifying TLS 1.3, the next-generation TLS protocol. The latter effort is intended to revamp the security of TLS that has been shown inadequate inmany instances as well as to add new security and functional fe...
متن کامل(De-)Constructing TLS 1.3
SSL/TLS is one of the most widely deployed cryptographic protocols on the Internet. It is used to protect the confidentiality and integrity of transmitted data in various client-server applications. The currently specified version is TLS 1.2, and its security has been analyzed extensively in the cryptographic literature. The IETF working group is actively developing a new version, TLS 1.3, whic...
متن کاملHybrid Encryption in the Multi-User Setting
This paper presents an attack in the multi-user setting on various publickey encryption schemes standardized in IEEE 1363a [20], SECG SEC 1 [27] and ISO 18033-2 [21]. The multi-user setting is a security model proposed by Bellare et al., which allows adversaries to simultaneously attack multiple ciphertexts created by one or more users. An attack is considered successful if the attacker learns ...
متن کاملAn Improvement of Novel Cryptographic Key Assignment Scheme for Dynamic Access Control in a Hierarchy
This letter presents a cryptographic key assignment scheme for dynamic access control in a hierarchy. A scheme for extending a previous cryptographic key assignment scheme to reduce the computation required for key generation and derivation algorithms is also proposed.
متن کاملAn efficient certificateless signcryption scheme in the standard model
Certificateless public key cryptography (CL-PKC) is a useful method in order to solve the problems of traditional public key infrastructure (i.e., large amount of computation, storage and communication costs for managing certificates) and ID-based public key cryptography (i.e., key escrow problem), simultaneously. A signcryption scheme is an important primitive in cryptographic protocols which ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010